Inequalities for Modified Bessel Functions

By Ingemar Nåsell

Abstract

A sequence of sharp versions of the inequality $I_{\nu+1}(x)<I_{\nu}(x), \nu>-\frac{1}{2}, x>0$, is established.

The modified Bessel function of the first kind I_{ν}, is real-valued for ν real on the domain $x>0$, and it is positive for $\nu \geqq-1$ on the same domain (see AbramowitzStegun [1] for standard properties of special functions). The inequality

$$
\begin{equation*}
I_{\nu+1}(x)<I_{\nu}(x) \tag{1}
\end{equation*}
$$

where $\nu>-\frac{1}{2}$ and $x>0$, was established by Soni [8] in 1965. Results that are stronger than (1) for $\nu \geqq 0$ have been given by Jones [3], Cochran [2], and Reudink [7]. Thus, Jones proved that

$$
\begin{equation*}
I_{\mu}(x)<I_{\nu}(x) \tag{2}
\end{equation*}
$$

for $\mu>\nu \geqq 0$ and $x>0$, while Cochran established the inequality $\partial I_{\nu}(x) / \partial \nu<0$ for $\nu \geqq 0$ and $x>0$. Reudink, apparently unaware of the work of the previous authors, proved in a different way that $\partial I_{\nu}(x) / \partial \nu<0$ for $\nu>0$ and $x>0$.

We observe first that (1) holds for $\nu \geqq-\frac{1}{2}$. Indeed, with $x>0$, we have

$$
I_{-1 / 2}(x)-I_{1 / 2}(x)=(2 /(\pi x))^{1 / 2} e^{-x}>0 .
$$

In the present note, we prove two propositions. The first one contains a rather modest but easily proved result that strengthens (1) for $\nu>0$. The second proposition gives a sequence of progressively sharper lower bounds of $I_{r}(x)$ that converge monotonically to $I_{\nu}(x)$.

Proposition 1. Let $\nu \geqq-1$ and $x>0$. Then

$$
\begin{equation*}
(1+\nu / x) I_{\nu+1}(x)<I_{\nu}(x) \tag{3}
\end{equation*}
$$

Proof. The series representation for I_{ν} is

$$
I_{\nu}(x)=\left(\frac{x}{2}\right)^{\prime} \sum_{k=0}^{\infty} \frac{(x / 2)^{2 k}}{k!\Gamma(k+\nu+1)} .
$$

Setting $k+1=j$ gives

$$
\begin{equation*}
I_{\nu}(x)=\left(\frac{x}{2}\right)^{\nu-2} \sum_{i=1}^{\infty} \frac{(x / 2)^{2 i}}{j!\Gamma(j+\nu+1)} j(j+\nu) . \tag{4}
\end{equation*}
$$

The average of these two expressions is

$$
\begin{equation*}
I_{\nu}(x)=\frac{1}{2}\left(\frac{x}{2}\right)^{\nu-2} \sum_{k=0}^{\infty} \frac{(x / 2)^{2 k}}{k!\Gamma(k+\nu+1)}\left[\left(\frac{x}{2}\right)^{2}+k(k+\nu)\right] . \tag{5}
\end{equation*}
$$

Replacing ν by $\nu+1$ in (4), multiplying by $(1+\nu / x)$, and subtracting the resulting expression from (5) gives

$$
I_{\nu}(x)-\left(1+\frac{\nu}{x}\right) I_{\nu+1}(x)=\frac{1}{2}\left(\frac{x}{2}\right)^{\nu-2} \sum_{k=0}^{\infty} \frac{(x / 2)^{2 k}}{k!\Gamma(k+\nu+1)}\left(\frac{x}{2}-k\right)^{2}>0,
$$

which proves (3).
This result was established by discarding an infinite series of nonnegative terms. A sharp version of (3) results from retaining a finite number of these terms.

As a preparation for Proposition 2, we define two sequences of functions $\left\{\boldsymbol{G}_{\nu, k}\right\}$ and $\left\{H_{\nu, k}\right\}, k=0,1,2, \cdots$, by*

$$
\begin{equation*}
G_{\nu, k}(x)=\sum_{i=1}^{k}(-1)^{i+1}\binom{k}{j} \frac{2(2 \nu+1)_{i-1}(\nu+j)}{(2 \nu+k+1)_{i}} I_{\nu+j}(x) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{\nu, k}(x)=G_{\nu, k}(x)+\frac{1}{\Gamma(\nu+1)}\left(\frac{x}{2}\right)^{\nu} e^{-x} \tag{7}
\end{equation*}
$$

where $\nu>-\frac{1}{2}$ and $x>0$.
We note that the inequality $G_{\nu, k}(x)<H_{\nu, k}(x)$ follows from these definitions.
Proposition 2. Let $\nu>-\frac{1}{2}$ and $x>0$. Then

$$
\begin{gather*}
0<H_{\nu, k}(x)<H_{\nu, k+1}(x)<I_{\nu}(x), \quad k \geqq 0, \tag{i}\\
H_{\nu, k}(x) \sim I_{\nu}(x), \quad x \rightarrow 0, \quad k \geqq 0, \tag{ii}\\
I_{\nu}(x)-H_{\nu, k}(x) \sim \frac{(2 \nu+1)_{k}}{(2 x)^{k}} I_{\nu}(x), \quad x \rightarrow \infty, \quad k \geqq 0,
\end{gather*}
$$

and
(iv)

$$
\lim _{k \rightarrow \infty} H_{\nu, k}(x)=I_{\nu}(x) .
$$

Proof. Our proof is based on an expansion of the confluent hypergeometric function in terms of modified Bessel functions. The foll Jwing expression follows from Luke [4, p. 48]:

$$
\begin{aligned}
{ }_{1} F_{1}(a ; c ; z)= & \Gamma\left(a+\frac{1}{2}\right) e^{z / 2}\left(\frac{4}{z}\right)^{a-1 / 2} \\
& \cdot\left[I_{a-1 / 2}\left(\frac{z}{2}\right)+\sum_{i=1}^{\infty} \frac{2\left(j+a-\frac{1}{2}\right)(2 a)_{i-1}(2 a-c)_{i}}{j!(c)_{i}} I_{i+a-1 / 2}\left(\frac{z}{2}\right)\right] .
\end{aligned}
$$

By letting $k \geqq 0$ be an integer and putting $a=\nu+\frac{1}{2}, c=2 \nu+k+1$, and $z=2 x$, we find from this expression and (6) that

$$
\begin{equation*}
I_{\nu}(x)-G_{\nu, k}(x)=\frac{1}{\Gamma(\nu+1)}\left(\frac{x}{2}\right)^{\nu} e^{-x}{ }_{1} F_{1}\left(\nu+\frac{1}{2} ; 2 \nu+k+1 ; 2 x\right) \tag{8}
\end{equation*}
$$

But ${ }_{1} F_{1}(a ; c ; z)>1$ for $a>0, c>0, z>0$. We conclude therefore from (8) and (7) that $I_{\nu}(x)>H_{\nu, k}(x)$.

[^0]From the contiguous recurrence relations for the confluent hypergeometric function, we find that

$$
{ }_{1} F_{1}(a ; c ; z)-{ }_{1} F_{1}(a ; c+1 ; z)=\frac{a z}{c(c+1)}{ }_{1} F_{1}(a+1 ; c+2 ; z) .
$$

From this recurrence relation and (8), we get
$G_{\nu, k+1}(x)-G_{\nu, k}(x)=\frac{2(2 \nu+1)}{\Gamma(\nu+1)(2 \nu+k+1)_{2}}\left(\frac{x}{2}\right)^{\nu+1} e^{-x}{ }_{1} F_{1}\left(\nu+\frac{3}{2} ; 2 \nu+k+3 ; 2 x\right)$.
Since the right-hand side of this equality is positive, we conclude that

$$
H_{\nu, k+1}(x)-H_{\nu, k}(x)=G_{\nu, k+1}(x)-G_{\nu, k}(x)>0 .
$$

This establishes (i) since $H_{\nu, 0}(x)>0$.
By using the first two terms in the series expansions of $I_{\nu}(x), e^{-x}$, and ${ }_{1} F_{1}\left(\nu+\frac{1}{2} ; 2 \nu+k+1 ; 2 x\right)$, we find from (8) that the asymptotic behavior of $G_{\nu, k}(x)$ as $x \rightarrow 0$ is

$$
G_{\nu, k}(x) \sim \frac{2 k}{(2 \nu+k+1) \Gamma(\nu+1)}\left(\frac{x}{2}\right)^{\nu+1}, \quad k \geqq 0
$$

From (7), we therefore get

$$
H_{\nu, k}(x) \sim \frac{1}{\Gamma(\nu+1)}\left(\frac{x}{2}\right)^{\nu}
$$

as $x \rightarrow 0$ for $k \geqq 0$. This establishes (ii).
We next apply the asymptotic expansion of ${ }_{1} F_{1}\left(\nu+\frac{1}{2} ; 2 \nu+k+1 ; 2 x\right)$ as $x \rightarrow \infty$ to (8) and use the duplication formula for the Γ-function to establish the asymptotic relation

$$
I_{\nu}(x)-G_{\nu, k}(x) \sim \frac{(2 \nu+1)_{k}}{(2 x)^{k}} \frac{e^{x}}{(2 \pi x)^{1 / 2}}
$$

as $x \rightarrow \infty$ and $k \geqq 0$. Statement (iii) now follows from (7) and the asymptotic expansion for $I_{\nu}(x)$ as $x \rightarrow \infty$.

Statement (iv) follows via relations (8) and (7) from the observation that

$$
\lim _{c \rightarrow \infty}{ }_{1} F_{1}(a ; c ; z)=1 .
$$

We proceed to compare the inequality $H_{\nu, k}(x)<I_{\nu}(x)$ with (1), (2), and (3).
From the definition of $G_{\nu, k}$ in (6), we find $G_{\nu, 1}(x)=I_{\nu+1}(x)$. Hence, the inequality $H_{\nu, k}(x)<I_{\nu}(x)$ is sharper than (1) for all $k \geqq 1$.

Let $\mu>\nu \geqq 0$ be fixed. We find then from (ii) that the inequality $H_{\nu, k}(x)<I_{\nu}(x)$ is sharper than (2) for all $k \geqq 0$, provided x is sufficiently close to 0 . The asymptotic behavior as $x \rightarrow \infty$ of $I_{\nu}(x)-I_{\mu}(x)$ is

$$
I_{\nu}(x)-I_{\mu}(x) \sim \frac{\mu^{2}-\nu^{2}}{2 x} I_{\nu}(x) .
$$

A comparison with (iii) shows that $H_{\nu, k}(x)<I_{\nu}(x)$ is a sharper inequality than (2) for $k \geqq 2$ and all sufficiently large values of x.

In order to effect a comparison with (3), we put $k=2$ in (6) to get

$$
G_{\nu, 2}(x)=2 \frac{\nu+1}{\nu+\frac{3}{2}} I_{\nu+1}(x)-\frac{\nu+\frac{1}{2}}{\nu+\frac{3}{2}} I_{\nu+2}(x)
$$

The recurrence relation

$$
\begin{equation*}
I_{\nu+2}(x)=I_{\nu}(x)-\frac{2(\nu+1)}{x} I_{\nu+1}(x) \tag{9}
\end{equation*}
$$

then gives

$$
\begin{equation*}
I_{\nu}(x)-G_{\nu, 2}(x)=\frac{2(\nu+1)}{\nu+\frac{3}{2}}\left[I_{\nu}(x)-\left(1+\frac{\nu+\frac{1}{2}}{x}\right) I_{\nu+1}(x)\right] . \tag{10}
\end{equation*}
$$

Hence, the inequality $H_{\nu, k}(x)<I_{\nu}(x)$ is stronger than (3) for $k \geqq 2$ and $\nu>-\frac{1}{2}$.
The inequalities discussed here are all in the form of lower bounds of $I_{\nu}(x)$. An upper bound of $I_{\nu}(x)$ is derived as follows. Replace ν by $\nu+1$ in (10), eliminate $I_{\nu+2}(x)$ from the bracket in the right-hand side of (10) by using (9), and make use of the positivity of the bracket. It follows that

$$
\begin{equation*}
I_{\nu}(x)<\frac{1+2(\nu+1) / x+2(\nu+1)\left(\nu+\frac{3}{2}\right) / x^{2}}{1+\left(\nu+\frac{3}{2}\right) / x} I_{\nu+1}(x) \tag{11}
\end{equation*}
$$

for $x>0$ and $\nu>-\frac{3}{2}$. Sharp versions of (11) are derived by making use of the inequalities $I_{\nu}(x)>H_{\nu, k}(x), k \geqq 2$ or $I_{\nu}(x)>G_{\nu, k}(x), k \geqq 3$. The general form for these upper bounds has not been found.

Luke [5] and Prohorov [6] have given inequalities for modified Bessel functions. These inequalities are weaker than those discussed here but have the virtue that the bounds for $I_{\nu}(x)$ are easily evaluated numerically.

I wish to thank Professor Warren M. Hirsch and the referee for helpful comments:

Bell Laboratories

Holmdel, New Jersey 07733

1. M. Abramowitz \& I. A. Stegun (Editors), Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables, Dover, New York, 1966. MR 34 \#8606.
2. J. A. Cochran, "The monotonicity of modified Bessel functions with respect to their order," J. Math. and Phys., v. 46, 1967, pp. 220-222. MR 35 \#4482.
3. A. L. Jones, "An extension of an inequality involving modified Bessel functions,"J. Math. and Phys., v. 47, 1968, pp. 220-221. MR 37 \#3067.
4. Y. L. Luke, The Special Functions and Their Approximations. Vol. II, Math. in Sci. and Engineering, vol. 53, Academic Press, New York, 1969. MR 40 \#2909.
5. Y. L. LUKE, "Inequalities for generalized hypergeometric functions," J. Approximation Theory, v. 5, 1972, pp. 41-65.
6. A. V. Prohorov, "Inequalities for Bessel functions of a purely imaginary argument," Teor. Verojatnost. i Primenen., v. 13, 1968, pp. 525-531. Theor. Probability Appl., v. 13, 1968, pp. 496-501. MR 39 \#503.
7. D. O. Reudink, "On the signs of the ν-derivatives of the modified Bessel functions $I_{\nu}(x)$ and $K_{\nu}(x), " J$. Res. Nat. Bur. Standards Sec. B, v. 72B, 1968, pp. 279-280. MR 38 \#3479.
8. R. P. Soni, "On an inequality for modified Bessel functions," J. Math. and Phys., v. 44, 1965, pp. 406-407. MR 32 \#2634.

[^0]: * We adopt the convention $\sum_{k-m}^{n} \alpha_{k}=0$ for $n<m$ and the notation $(\alpha)_{n}=\alpha(\alpha+1)_{i} \cdots$ $(\alpha+n-1), n \geqq 1,(\alpha)_{0}=1$.

